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Abstract This paper considers the problem of estimation for binomial proportions
of sensitive attributes in the population of interest. Randomized response techniques
are suggested for protecting the privacy of respondents and reducing the response bias
while eliciting information on sensitive attributes. By applying the Wilson (J Am Stat
Assoc 22:209–212, 1927) score approach for constructing confidence intervals, vari-
ous probable point estimators and confidence interval estimators are suggested for the
common structures of randomized response procedures. In addition, efficiency com-
parisons are carried out to study the performances of the proposed estimators for both
the cases of direct response surveys and randomized response surveys. Circumstances
under which each proposed estimators is better are also identified.

Keywords Coverage probability · Direct response · Estimation efficiency ·
Privacy protection

1 Introduction

Social surveys sometimes include sensitive or threatening issues of enquiry, such as
sexual behavior, drug use, and criminal behavior, that it is difficult to obtain valid
and reliable information. If the respondents are asked directly about controversial top-
ics, it often results in refusal or in untruthful responses, especially when they have
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committed sensitive behaviors. To improve respondent cooperation and to procure
reliable data, Warner (1965) suggested an ingenious method called the randomized
response technique. This survey technique allows the respondent to answer sensitive
questions truthfully without revealing embarrassing or incriminating behavior. As a
result, the technique assures a considerable degree of privacy protection in many con-
texts (Soeken and Macready 1982). Following the pioneering work of Warner (1965),
many modifications are proposed in the literature. A good exposition of develop-
ments on randomized response techniques could refer to Chaudhuri and Mukerjee
(1988). Some recent developments are Arnab and Dorffner (2007), Kim and Elam
(2007), Chaudhuri and Pal (2008), Huang (2008), Pal (2008), Yu et al. (2008), Bouza
(2009), Diana and Perri (2009), and Huang (2010), etc. In this paper, an attempt
is made here to utilize the Wilson (1927) score approach to construct some point
estimators and confidence interval estimators for the case of randomized response
surveys.

Under the direct response surveys, confidence intervals are well known as an
important aspect of reporting statistical results, and have been studied extensively
in recent literature. The Clopper and Pearson (1934) “exact” method for construct-
ing a confidence interval is unfortunate as it provides a coverage probability at least
as large as the desired level with the tendency of providing a confidence level too
large with respect to the desired level. Among approximate confidence intervals the
simplest method commonly presented in elemantary statistics courses is the Wald
interval, which is based on the normal approximation to the binomial distribution
with variance estimated by the sample. The Wald interval has been solidly demon-
strated that its coverage probability often being much lower than intended even for
large sample sizes. The limits of Wald interval may be outside the parameter space
[0, 1], and might result in the degenerate interval [0, 0] or [1, 1]. Without estimating
the variance the Wilson (1927) score approach is a straightward application of nor-
mal approximation. The Wilson (1927) score approach has been shown to perform
well, such as coverage probability close to the desired level and its limits are always
belong to the parameter space [0, 1]. Therefore, Agresti and Coull (1998) comment
that approximate intervals perform better than exact intervals. Bohning (1988) and
Newcombe (1998) suggested the Wilson (1927) score approach as it performs well
and computationally attractive. The Wilson (1927) score approach is described as
follows.

Consider a dichotomous population in which every person belongs either to a group
A, or to its complement Ā. The problem of interest is to estimate the population pro-
portion π of group A from a with-replacement simple random sample of size n. Denote
by θ̂ the usual sample mean of the response. Then π̂ = θ̂ is the maximum likelihood
estimator of π , which is unbiased with variance given by V ar(π̂) = π(1 − π)/n.
A two-sided 100(1 −α)% confidence interval for π may be obtained according to the
solution of the following quadratic inequality for π :

n(π̂ − π)2 ≤ z2
α/2π(1 − π), (1)

where z2
α/2 denotes the upper α/2 percentile of the standard normal distribution. If we

denote by W = n/(n + z2
α/2), on solving the inequality (1) for π , the computational
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formula of the confidence interval is given by

W π̂ + (1 − W )
1

2
± zα/2

√
W π̂(1 − π̂)

n + z2
α/2

+ 1 − W

4(n + z2
α/2)

, (2)

which is recently studied by Olivier and May (2006). Instead of the regular estimator
π̂ , the confidence interval (2) is symmetric about the point estimator

n

n + z2
α/2

π̂ + z2
α/2

n + z2
α/2

1

2
,

which is also suggested by Chen (1990). Obviously, the Wilson (1927) score approach
provides not only a confidence interval but also a point estimator for π . It is notewor-
thy that the above point and interval estimations are studied only for the case of direct
response surveys.

In Sect. 2, we consider the Wilson (1927) score approach under common ran-
domized response framework. We then derive some point estimators and confidence
interval estimators for some practical relevant concept. Sections 3 and 4 are devoted
to empirical studies and comparisons for both the cases of direct response surveys and
randomized response surveys. An operation rule for getting an effective estimator is
also identified.

2 The proposed estimators

In order to estimate the proportion of a sensitive characteristic A, a randomization
device is instructed to the respondents to collect sample data. Let θ denote the probabil-
ity of getting a ‘yes’ response for a given randomized response model. In Warner (1965)
model, two questions used in the randomization device are “Do you belong to group
A?” and “Do you belong to group Ā?” with probabilities p and (1− p) respectively. For
Warner model, it is clear that θ = pπ+(1− p)(1−π) = (2p−1)π+(1− p), p �= 0.5.
The randomization device used in the unrelated-question model, suggested by Horvitz
et al. (1967) and then extended by Greenberg et al. (1969), consists of two questions:
“Do you belong to group Ā?” and “Do you belong to group Y?”, where Y denotes
a neutral characteristic with known population proportion πy . For unrelated-question
model, we have θ = pπ + (1 − p)πy, p �= 0. The Devore (1977) model is analogous
to the unrelated-question model with one basic difference: The membership in group
Y is certain, that is, πy = 1. For this model, we have θ = pπ + (1 − p), p �= 0. It is
observed that the models mentioned above and some other models preserve a common
property, which is described as follows.

Under the usual randomized response surveys, each respondent is provided with a
randomization device by which he or she draws a question in a set of questions includ-
ing the one relating to membership in the sensitive group A. The relationship between
θ and π may be expressed in the following general form. Let v and w be nonnegative
real numbers, we have θ = wπ+v, and therefore π = (θ−v)/w, 0 ≤ v < v+w ≤ 1.
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Denote by θ̂ the sample proportion of ‘yes’ answers obtained from n respondents, an
unbiased estimator of π is then given by

π̂ = θ̂ − v

w
, (3)

with variance given by

V ar(π̂) = θ(1 − θ)

nw2 = w2π(1 − π) + w(1 − w − 2v)π + v(1 − v)

nw2 . (4)

It is noted that the estimator π̂ with (v,w) = (0, 1) will reduce to the conventional
estimator, the usual sample mean θ̂ , which is commonly used in direct response sur-
veys. Observe that with the generalized notation, the Warner (1965) model is obtained
for v = 1 − p and w = 2p − 1, the unrelated-question model is obtained for v =
(1 − p)πy and w = p, and the Devore (1977) model is obtained for v = 1 − p and
w = p. In what follows, from practical point of view, we consider the following three
point estimators and confidence intervals for π .

2.1 The first estimator

Based on the unbiased estimator π̂ = (θ̂ − v)/w, the inequality for constructing a
two-sided 100(1 − α)% confidence interval is given by

(
θ̂ − v

w
− π

)2

≤ z2
α/2

[
w2π(1 − π) + w(1 − w − 2v)π + v(1 − v)

nw2

]
. (5)

After some simple algebra, expression (5) can be expressed in the form

(n+z2
α/2)w

2π2 − w[2n(θ̂ − v)+z2
α/2(1 − 2v)]π+n(θ̂ − v)2 − z2

α/2v(1 − v) ≤ 0.

(6)

Solving (6) for π yields the following confidence interval C I1, say, given by

W1
θ̂ − v

w
+ (1 − W1)

1 − 2v

2w
± zα/2

√√√√ W1θ̂ (1 − θ̂ )

(n + z2
α/2)w

2
+ 1 − W1

4(n + z2
α/2)w

2
, (7)

where W1 = n/(n + z2
α/2). The midpoint of interval (7) may be regarded as a point

estimator π̂1, say, as

π̂1 = W1
θ̂ − v

w
+ (1 − W1)

1 − 2v

2w
. (8)
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The mean square error of the estimator π̂1 can be obtained as

M SE(π̂1) = W 2
1

θ(1 − θ)

nw2 + (1 − W1)
2
(

1 − 2v

2w
− π

)2

, (9)

where θ = wπ + v.
It is seen that the estimator π̂1 is obtained from the use of the unbiased estima-

tor π̂ in inequality (5). Another point estimator may further be established by using
Wilson (1927) score approach according to the estimator π̂1. Repeating such a process
sequentially, one may then interest in finding the limiting point estimator, which is
studied as follows.

2.2 The second estimator

To derive the limiting point estimator, let us first consider the general linear-type esti-
mator for π as π̂l = aθ̂ + b, where a and b are known in advance. The mean square
error of the general linear-type estimator π̂l is given by

M SE(π̂l) = a2 (wπ + v)(1 − wπ − v)

n
+ [(aw − 1)π + (av + b)]2.

On the basis of the general linear-type estimator, the Wilson (1927) score interval is
based on the solution of the following inequality for π :

(aθ̂ + b − π)2 ≤ z2
α/2

{
a2 (wπ + v)(1 − wπ − v)

n
+ [(aw − 1)π + (av + b)]2

}
,

which can be rewritten as

{n[1 − (aw − 1)2z2
α/2] + a2w2z2

α/2}π2 − [2n(aθ̂ + b) + a2w(1 − 2v)z2
α/2

+2n(aw − 1)(av+b)z2
α/2]π+n(aθ̂ + b)2 − a2v(1 − v)z2

α/2 − n(av+b)2z2
α/2 ≤ 0,

where n[1−(aw−1)2z2
α/2]+a2w2z2

α/2 > 0. The midpoint of the resulting confidence
interval is given by

2naθ̂ + 2n[b + (aw − 1)(av + b)z2
α/2] + a2w(1 − 2v)z2

α/2

2
{

n[1 − (aw − 1)2z2
α/2] + a2w2z2

α/2

} . (10)

Suppose that the limiting estimator is of the form π̂2 = aθ̂ + b. The limiting value a
of the coefficient of θ̂ can be obtained by solving the following equality for a:

a = na

n[1 − (aw − 1)2z2
α/2] + a2w2z2

α/2

,
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implying that the feasible solution of a is given by

a = n

(n + √
n)w

.

In the same way, the limiting value b can also be obtained as

b =
√

n

(n + √
n)

1 − 2v

2w
− n

(n + √
n)

v

w
.

Denote by W2 = n/(n + √
n), we get the limiting point estimator as

π̂2 = W2
θ̂ − v

w
+ (1 − W2)

1 − 2v

2w
, (11)

with mean square error given by

M SE(π̂2) = n

4(n + √
n)2w2

. (12)

It is noted that M SE(π̂2) is a constant as it is unrelated with the value of π . Due to
the constant value of M SE(π̂2), the confidence interval C I2, say, is given by

π̂2 ± zα/2

√
n

4(n + √
n)2w2

. (13)

2.3 The third estimator

An interesting property is observed that when θ̂ = 0.5, the resulting values of the
linear-type estimators π̂ , π̂1 and π̂2 are all equal to (1 − 2v)/2w. One may then
intend to achieve the condition for such a feature. Essentially, on substituting θ̂ = 0.5
into expression (10), the condition under which the resulting estimate being equal to
(1 − 2v)/2w can be obtained as

[(aw − 1)z2
α/2 + 1][(aw − 1) + 2(v + wb)] = 0,

implying that

a = z2
α/2 − 1

wz2
α/2

, or a + b = 1 − 2v

w
. (14)

It is obvious that the regular unbiased estimator π̂ and the two previous proposed
estimators π̂1 and π̂2 merely satisfies the right hand side equality in (14). A worth
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mentioning choice of a and b satisfying both the equalities in condition (14) is that

a = z2
α/2 − 1

wz2
α/2

, and b = 1 − 2vz2
α/2

2wz2
α/2

.

If we denote by W3 = n/(n + z2
α/2 − 1), we then obtain an estimator of π as

π̂3 = W3
θ̂ − v

w
+ (1 − W3)

1 − 2v

2w
, (15)

with mean square error given by

M SE(π̂3) = W 2
3

θ(1 − θ)

nw2 + (1 − W3)
2
(

1 − 2v

2w
− π

)2

, (16)

where θ = wπ + v. In addition, the corresponding confidence interval C I3, say, is
given by

π̂3 ± zα/2

√√√√(
z2
α/2 − 1

z2
α/2

) [
W3θ̂ (1 − θ̂ )

(n + z2
α/2 − 1)w2

+ 1 − W3

4(n + z2
α/2 − 1)w2

]
+ K , (17)

where K = W3(1 − 2θ̂ )2/4w2z4
α/2.

An interesting property of the proposed point estimators π̂1, π̂2 and π̂3 is that each
estimator is a relatively simple weighted estimator incorporating sample information
using π̂ = (θ̂ −v)/w and an uninformative prior using (1−2v)/2w, but with different
weight factors W1, W2 and W3. As n becomes large, each weight factor approaches
unity and the corresponding estimator depends more on the sample information.
In what follows, some empirical studies are carried out to study the performances
of the proposed estimators. Since the proposed estimators also cover the case of direct
response surveys, the performances are compared for direct response surveys and ran-
domized response surveys separately. In particular, the randomization device is simply
considered as the Warner (1965) device, so that v = 1 − p and w = 2p − 1.

3 Comparison of point estimators

Here the efficiency aspect of the proposed point estimators is studied with respect to
mean square error criterion.

3.1 Direct response surveys

It is known that when the survey attribute is not sensitive, direct response surveys
may be adopted so that the choice (v,w) = (0, 1) can be considered. In this case,
expressions (3), (8), (11) and (15) respectively reduce to π̂ = θ̂ ; π̂1 = (2nθ̂ +
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z2
α/2)/2(n + z2

α/2), which is also suggested by Chen (1990) and Olivier and May

(2006); π̂2 = (2nθ̂ + √
n)/2(n + √

n), which is same as Casella and Berger (1990)
estimator; and π̂3 = (2nθ̂ + z2

α/2 − 1)/2(n + z2
α/2 − 1). The mean square errors of the

competing estimators can be obtained by substituting (v,w) = (0, 1) into expressions
(4), (9), (12) and (16). These are respectively given by

M SE(π̂) = π(1 − π)

n
, M SE(π̂1) = 4nπ(1 − π) + z4

α/2(1 − 2π)2

4(n + z2
α/2)

2
,

M SE(π̂2) = n

4(n + √
n)2

, and M SE(π̂3)= 4nπ(1 − π) + (z2
α/2 − 1)2(1 − 2π)2

4(n + z2
α/2 − 1)2

.

Since 95% confidence coefficient is commonly used, in what follows, the value of α

is chosen to be 0.05 such that z0.025 = 1.96. As the graph is symmetric about 0.5, it is
only required to consider π ∈ [0, 0.5]. To have an idea about the performances of the
proposed estimators, we compute the relative efficiencies (RE) of π̂1, π̂2 and π̂3 with
respect to π̂ by the formula

REi = M SE(π̂)

M SE(π̂i )
,

where i = 1, 2, 3. Relative efficiencies thus obtained are presented in Fig. 1 for n = 30
and 100. Note that π̂i is more efficient than π̂ if REi > 1.

From Fig. 1, it is seen that there is an interval in which one of the four compet-
ing estimators is more efficient than others. Denote by (0, U1) the interval in which
π̂ is better. Solving equation M SE(π̂) = M SE(π̂3) for π is identical to solve the
following equation:

π2 − π + n(z2
α/2 − 1)

4(nz2
α/2 + n + z2

α/2 − 1)
= 0. (18)

Fig. 1 Relative efficiency of the estimators π̂1, π̂2 and π̂3 with respect to π̂ for direct response surveys
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The value of U1 is the feasible solution of (18), which is given by

U1 = 1

2

⎡
⎣1 −

√
(2n + z2

α/2 − 1)(nz2
α/2 + n + z2

α/2 − 1)

nz2
α/2 + n + z2

α/2 − 1

⎤
⎦ . (19)

Similarly, on solving M SE(π̂1) = M SE(π̂3) for π , and after some simple algebra,
we have

π2 − π + (2nz2
α/2 − n + 2z4

α/2 − 2z2
α/2)

4(2nz2
α/2 + n + 2z4

α/2 − 1)
= 0.

The feasible solution, say U2, for π can then be obtained as

U2 = 1

2

⎡
⎣1 −

√
(2n + 2z2

α/2 − 1)(2nz2
α/2 + n + 2z4

α/2 − 1)

2nz2
α/2 + n + 2z4

α/2 − 1

⎤
⎦ . (20)

On solving M SE(π̂1) = M SE(π̂2) for π , we have

π2 − π +
n

(
n2 + 2nz2

α/2 − nz4
α/2 − 2

√
nz4

α/2

)
4

(
n + √

n
)2

(n − z4
α/2)

= 0.

The feasible solution, say U3, for π can then be obtained as

U3 = 1

2

⎡
⎣1 −

√
n(n − z4

α/2)(2n
√

n − 2nz2
α/2 + n − z4

α/2)

(n + √
n)(n − z4

α/2)

⎤
⎦ . (21)

According to the values of U1, U2 and U3 given in (19), (20) and (21), it is sum-
marized that we should choose the estimator π̂ = θ̂ for π ∈ [0, U1] ∪ [1 − U1, 1];
the estimator π̂1 = (2nθ̂ + z2

α/2)/2(n + z2
α/2) for π ∈ [U2, U3] ∪ [1 − U3, 1 − U2];

the estimator π̂2 = (2nθ̂ + √
n)/2(n + √

n) for π ∈ [U3, 1 − U3]; and the estimator
π̂3 = (2nθ̂ + z2

α/2 − 1)/2(n + z2
α/2 − 1) for π ∈ [U1, U2] ∪ [1 −U2, 1 −U1]. Though

we do not provide figures for larger sample size such as n = 1000, it is noteworthy
that the results are quite similar to that given in Fig. 1. So, one may use the above
conclusion to determine which estimator is better.

3.2 Randomized response surveys

Here the Warner (1965) randomization device is under consideration. For the appro-
priate choice of design parameter p, Greenberg et al. (1969) suggested a choice of p
in the interval [0.7, 0.9]. Soeken and Macready (1982) suggested p ∈ [0.7, 0.85], and
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(Hedayat and Sinha, 1991, p. 318) suggested p ∈ [0.6, 0.8]. The values of p given in
(Singh and Mangat, 1996, pp. 340–357) are chosen such that p ∈ [0.7, 0.8]. These
suggest that a choice of p in the interval [0.7, 0.8] would be most acceptable. The
efficiency comparisons are then worked out for the cases of p = 0.7 and 0.8. Plots of
relative efficiencies are displayed in Fig. 2 for n = 30 and 100.

From Fig. 2, it is seen that the estimator π̂ seems to be of the least efficiency among
the four competing estimators for both the cases of p = 0.7 and 0.8. When p = 0.7,
the estimator π̂2 is more efficient than π̂ , π̂1 and π̂3 for all π when the sample size n is
small. Instead, as n increases one may employ the estimator π̂1 for π being near zero.
In case when p = 0.8, there is an interval in which one of the three proposed estima-
tors is superior to others. It is noted that when p is fixed, the results for larger sample
size are analogous to the case of n = 100. Relative position of relative efficiency
curves remains unchanged, but all the curves approach the horizontal line RE = 1. In
addition, though we do not provide the result for p = 0.9, plot of relative efficiency
curves is similar to that of direct response surveys. In these regards, proceeding on the
lines of Sect. 3.1, we present the following steps to determine the appropriate point
estimator.

Step1. Calculate the value of U3, where

U3 = 1

2

⎡
⎣1 −

√
n(n − z4

α/2)(2n
√

n − 2nz2
α/2 + n − z4

α/2)

(2p − 1)(n + √
n)(n − z4

α/2)

⎤
⎦ .

Fig. 2 Relative efficiency of the estimators π̂1, π̂2 and π̂3 with respect to π̂ for randomized response
surveys
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If U3 ≤ 0, one may prefer to the estimator π̂2, given in (11), for all π , and
then stop. If U3 > 0, one may choose the estimator π̂2 for π ∈ [U3, 1 − U3],
and then go to the Step 2.

Step2. Calculate the value of U2, where

U2 = 1

2

⎡
⎣1 −

√
(2n + 2z2

α/2 − 1)(2nz2
α/2 + n + 2z4

α/2 − 1)

(2p − 1)(2nz2
α/2 + n + 2z4

α/2 − 1)

⎤
⎦ .

If U2 ≤ 0, one may prefer to the estimator π̂1, given in (8), for π ∈ [0, U3] ∪
[1 − U3, 1], and then stop. If U2 > 0, one may choose the estimator π̂1 for
π ∈ [U2, U3] ∪ [1 − U3, 1 − U2], and then go to the Step 3.

Step3. Calculate the value of U1, where

U1 = 1

2

⎡
⎣1 −

√
(2n + z2

α/2 − 1)(nz2
α/2 + n + z2

α/2 − 1)

(2p − 1)(nz2
α/2 + n + z2

α/2 − 1)

⎤
⎦ .

If U1 ≤ 0, one may prefer to the estimator π̂3, given in (15), for π ∈ [0, U2]∪
[1 − U2, 1], and then stop. If U1 > 0, one may choose the estimator π̂3 for
π ∈ [U1, U2] ∪ [1 − U2, 1 − U1], and choose the estimator π̂ , given in (3),
for π ∈ [0, U1] ∪ [1 − U1, 1].

4 Comparison of confidence intervals

Here the performance of confidence intervals is examined by means of coverage prob-
ability and probability of generating meaningless limits.

4.1 Direct response surveys

On substituting the value (v,w) = (0, 1) into expressions (7), (13) and (17), the
proposed intervals C I1, C I2 and C I3 are respectively given by

W1θ̂ + (1 − W1)
1

2
± zα/2

√√√√W1θ̂ (1 − θ̂ )

n + z2
α/2

+ 1 − W1

4(n + z2
α/2)

,

W2θ̂ + (1 − W2)
1

2
± zα/2

√
n

4(n + √
n)2

,

W3θ̂ + (1 − W3)
1

2
± zα/2

√√√√(
z2
α/2 − 1

z2
α/2

) [
W3θ̂ (1 − θ̂ )

n + z2
α/2 − 1

+ 1 − W3

4(n + z2
α/2 − 1)

]
+K ,
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where K = W3(1 − 2θ̂ )2/4z4
α/2. Except the above intervals, the Wald confidence

interval is also under consideration. The Wald confidence interval C I , say, is given by

θ̂ ± zα/2

√
θ̂ (1 − θ̂ )

n
.

The first criterion used here to evaluate the performance of confidence intervals is the
coverage probability. For a binomial distribution with parameter n and π , the coverage
probability is given by

Cn(π) =
n∑

k=0

I (k, n)

(
n

k

)
πk(1 − π)n−k,

where I (k, n) denotes the indicator function for the estimated confidence interval con-
taining k. Mean, variance and minimum of coverage probability of the four intervals
C I, C I1, C I2 and C I3 are presented in Table 1 for n = 10, 20, 30, 50, 100. Plot of
coverage probabilities for the case of n = 30 is illustrated in Fig. 3 for π ∈ [0, 0.5].
It is known that a confidence interval construction is desirable for which the coverage
probability is close to the desired confidence level 100(1−α)%. Table 1 and Fig. 3 sep-
arately shows the well known failure of Wald confidence interval C I . The confidence
interval C I1 seems to be of coverage probability closes to the desired confidence level,
and of smaller variance. For the criterion of minimum value of coverage probability,
the confidence interval C I3 is superior.

Table 1 Mean, variance and minimum of coverage probability for direct response surveys

n Measure C I C I1 C I2 C I3

10 Mean 0.7693 0.9541 0.9535 0.9553

Variance 0.0820 0.0005 0.0005 0.0005

Minimum 0.0000 0.8350 0.8984 0.9020

20 Mean 0.8460 0.9530 0.9554 0.9635

Variance 0.0420 0.0003 0.0004 0.0006

Minimum 0.0000 0.8366 0.9165 0.9212

30 Mean 0.8749 0.9524 0.9564 0.9683

Variance 0.0283 0.0002 0.0003 0.0008

Minimum 0.0000 0.8371 0.9241 0.9275

50 Mean 0.9006 0.9518 0.9573 0.9740

Variance 0.0172 0.0001 0.0003 0.0010

Minimum 0.0000 0.8376 0.9310 0.9325

100 Mean 0.9223 0.9511 0.9583 0.9806

Variance 0.0087 0.0001 0.0003 0.0014

Minimum 0.0000 0.8379 0.9377 0.9380
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Fig. 3 Coverage probability of intervals C I, C I1, C I2 and C I3 for direct response surveys

Another useful criterion is that a confidence interval should avoid generating mean-
ingless limits such as either below zero or above unity, or both. The results are pro-
vided in Table 2. Table 2 clearly shows that the confidence interval C I1 performs better
than C I, C I2 and C I3 as its limits will always belong to the parameter space [0, 1].

Table 2 Probability of undesirable feature for direct response surveys

n Event C I C I1 C I2 C I3

10 Both limits outside [0,1] 0.0000 0.0000 0.0000 0.0000

Limits below 0 or above 1 0.3636 0.0000 0.3636 0.3636

Midpoint below 0 or above 1 0.0000 0.0000 0.0000 0.0000

20 Both limits outside [0,1] 0.0000 0.0000 0.0000 0.0000

Limits below 0 or above 1 0.2857 0.0000 0.2857 0.3810

Midpoint below 0 or above 1 0.0000 0.0000 0.0000 0.0000

30 Both limits outside [0,1] 0.0000 0.0000 0.0000 0.0000

Limits below 0 or above 1 0.1935 0.0000 0.1935 0.3871

Midpoint below 0 or above 1 0.0000 0.0000 0.0000 0.0000

50 Both limits outside [0,1] 0.0000 0.0000 0.0000 0.0000

Limits below 0 or above 1 0.1176 0.0000 0.1569 0.3529

Midpoint below 0 or above 1 0.0000 0.0000 0.0000 0.0000

100 Both limits outside [0,1] 0.0000 0.0000 0.0000 0.0000

Limits below 0 or above 1 0.0594 0.0000 0.0990 0.3366

Midpoint below 0 or above 1 0.0000 0.0000 0.0000 0.0000
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Table 3 Mean, variance and minimum of coverage probability for p = 0.7 and 0.8

p n Measure C I C I1 C I2 C I3

0.7 10 Mean 0.6059 0.7818 0.9454 0.9523

Variance 0.2099 0.0809 0.0027 0.0020

Minimum 0.0000 0.0000 0.7759 0.8113

20 Mean 0.5350 0.6272 0.7344 0.8567

Variance 0.2820 0.2028 0.1031 0.0226

Minimum 0.0000 0.0000 0.0000 0.3618

30 Mean 0.4764 0.5352 0.6116 0.7578

Variance 0.3478 0.2934 0.2148 0.0770

Minimum 0.0000 0.0000 0.0000 0.0000

50 Mean 0.3996 0.4312 0.4793 0.6410

Variance 0.4347 0.4039 0.3508 0.1758

Minimum 0.0000 0.0000 0.0000 0.0000

100 Mean 0.3024 0.3150 0.3395 0.4958

Variance 0.5465 0.5336 0.5054 0.3202

Minimum 0.0000 0.0000 0.0000 0.0000

0.8 10 Mean 0.7026 0.9415 0.9779 0.9790

Variance 0.1088 0.0033 0.0013 0.0013

Minimum 0.0000 0.7488 0.9349 0.9368

20 Mean 0.6428 0.7881 0.9614 0.9778

Variance 0.1777 0.0668 0.0008 0.0012

Minimum 0.0000 0.0000 0.9069 0.9281

30 Mean 0.5962 0.6941 0.9231 0.9777

Variance 0.2264 0.1446 0.0028 0.0012

Minimum 0.0000 0.0000 0.7677 0.9326

50 Mean 0.5240 0.5829 0.7524 0.9783

Variance 0.3025 0.2481 0.0880 0.0012

Minimum 0.0000 0.0000 0.0000 0.9341

100 Mean 0.4176 0.4442 0.5343 0.9806

Variance 0.4182 0.3915 0.2930 0.0013

Minimum 0.0000 0.0000 0.0000 0.9400

According to the results of Tables 1, 2 and Fig. 3, the confidence interval C I1 is rec-
ommended for direct response surveys when constructing a 95% confidence interval
for π .

4.2 Randomized response surveys

As the variance of π̂ = (θ̂ − v)/w is θ(1 − θ)/nw2, the Wald confidence interval
C I for randomized response surveys is given by

θ̂ − v

w
± zα/2

√
θ̂ (1 − θ̂ )

nw2 .
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Fig. 4 Coverage probability of intervals C I, C I1, C I2 and C I3 for p = 0.7

Fig. 5 Coverage probability of intervals C I, C I1, C I2 and C I3 for p = 0.8
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Table 4 Probability of undesirable feature for p = 0.7 and 0.8

p n Event C I C I1 C I2 C I3

0.7 10 Both limits outside [0,1] 0.3636 0.1818 0.0000 0.0000

Limits below 0 or above 1 1.0000 1.0000 1.0000 1.0000

Midpoint below 0 or above 1 0.7273 0.5455 0.5455 0.5455

20 Both limits outside [0,1] 0.2857 0.1905 0.0952 0.0000

Limits below 0 or above 1 1.0000 1.0000 0.9524 0.9524

Midpoint below 0 or above 1 0.6667 0.5714 0.5714 0.5714

30 Both limits outside [0,1] 0.3226 0.3226 0.1935 0.0645

Limits below 0 or above 1 0.9677 0.9032 0.9032 0.9032

Midpoint below 0 or above 1 0.6452 0.5806 0.5161 0.5806

50 Both limits outside [0,1] 0.3922 0.3529 0.2745 0.1176

Limits below 0 or above 1 0.8627 0.8627 0.8235 0.8235

Midpoint below 0 or above 1 0.6275 0.5882 0.5490 0.5882

100 Both limits outside [0,1] 0.4356 0.4356 0.3762 0.1386

Limits below 0 or above 1 0.7921 0.7723 0.7525 0.7921

Midpoint below 0 or above 1 0.6139 0.5941 0.5743 0.5941

0.8 10 Both limits outside [0,1] 0.1818 0.0000 0.0000 0.0000

Limits below 0 or above 1 1.0000 0.9091 0.9091 0.9091

Midpoint below 0 or above 1 0.3636 0.1818 0.3636 0.3636

20 Both limits outside [0,1] 0.1905 0.0952 0.0000 0.0000

Limits below 0 or above 1 0.8571 0.7619 0.7619 0.7619

Midpoint below 0 or above 1 0.3810 0.2857 0.2857 0.3810

30 Both limits outside [0,1] 0.1935 0.1209 0.0000 0.0000

Limits below 0 or above 1 0.7742 0.7097 0.6452 0.7097

Midpoint below 0 or above 1 0.3871 0.3226 0.3226 0.3871

50 Both limits outside [0,1] 0.2353 0.1961 0.0392 0.0000

Limits below 0 or above 1 0.6667 0.6275 0.5882 0.6667

Midpoint below 0 or above 1 0.3922 0.3529 0.3137 0.3922

100 Both limits outside [0,1] 0.2772 0.2574 0.1584 0.0000

Limits below 0 or above 1 0.5743 0.5545 0.5347 0.6337

Midpoint below 0 or above 1 0.3960 0.3762 0.3366 0.3960

The three proposed confidence intervals are respectively given in (7), (13) and
(17). Mean, variance and minimum of coverage probability of the four intervals
C I, C I1, C I2 and C I3 are presented in Table 3 for p = 0.7 and 0.8. Plot of cov-
erage probabilities for the case of n = 30 is illustrated in Figs. 4 and 5 for p = 0.7 and
0.8 respectively. Table 3, Figs. 4 and 5 indicate that the Wald confidence interval C I
performs worst. The confidence interval C I3 performs well, followed by the interval
C I2. If we compare Figs. 3, 4 and 5, larger value of p will result in better performance
in coverage probability. Table 4 further provides the probability of undesirable fea-
ture for the cases of p = 0.7 and 0.8. Table 4 clearly shows that the probability of
undesirable feature for the four confidence intervals decreases as p increases. Overall,
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the empirical evidences of Tables 3, 4, Figs. 4 and 5 provide supports a choice of the
confidence interval C I3.

It is noted that the four confidence intervals C I, C I1, C I2 and C I3 are centered at
the point estimators π̂ , π̂1, π̂2 and π̂3 respectively. Each point estimator is a relatively
simple weighted mean of π̂ = (θ̂ − v)/w and (1 − 2v)/2w with different weight
factors 1, W1, W2 and W3. As the sample size n increases, W1, W2 and W3 approaches
unity and the corresponding estimator π̂1, π̂2 and π̂3 depends more on the value of
π̂ = (θ̂ − v)/w. However, the value of π̂ = (θ̂ − v)/w is negative as θ̂ < v, while
greater than unity as θ̂ > w + v. So, increasing sample size n might increase the
possibility of meaningless limits, and thus decrease the coverage probabilities. Trun-
cation does not help much, it merely improves the coverage probabilities for π close
to zero or unity. To solve out this problem, one may employ some other admissible
estimators such as the nonlinear estimator proposed by Raghavarao (1978). These are
left for future studies.
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